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-revolution (NOR). Like the latter approach, a modal expansion is used
to describe the unknown surface currents on the DOT. The present
analysis has been developed to treat the far-field radiation and
scattering from a BOT excited by active antennas or illuminated by
a plane wave of arbitrary polarization and angle of incidence. In
addition, the electric and magnetic near-field components are determined
in the vicinity of active and passive apertures (slots). Using the
Schelkunoff equivalence theorem, the aperture-coupled fields within a
DOT are also obtained. The formulation has been implemented by a
computer algoritim and validated using accepted data in the literature.4
A user/systems manual (Volume II) provides a detailed description of
the use of the codes and example problems. Program listings are given
in Volume III.
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EVALUATION

This report documents an electromagnetic (EM) fields analysis technique that
was developed for a class of bodies that can be modeled -as rectangular cylinders
with an arbitrary cross sectional geometry, and are referred to as "Bodies of
Translation" (BOT). This technique has the ability to model EM scattering
radiation with multiple antennas, aperture coupling, near and far electric and
magnetic fields as well as surface current distribution.

This technique is presently limited to modeling BOT's which have open ends
and slot antennas. A subsequent effort will address these limitations and develop
procedures for modeling the ends of the BOT's and off-surface radiations such as
monopoles and loops. Emphasis will also be placed on techniques which will allow
one to hybrid this method with other EM analysis techniques in order to model the
behavior of more complex structures as well as to economize computer resources.

DANIEL E. WARREN
Project Engineer
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1. INTRODUCTION AND BACKGROUND

Modern aircraft and missiles require complex electromagnetic (EM)

systems to perform their roles effectively. To characterize the behavior of

these systems, analytical techniques have been developed to predict the EM

radiation generated and scattered by aerospace vehicles. Recently, predic-

tive techniques based on the method of moments (MK) have been developed to

solve a variety of antenna, coupling, and field penetration problems.1 In

these analyses, the radiating or scattering structures are represented by

wires, surface patches, and wire grids. Because of the computational re-

quirements of the method to date, application of these methods has been

22
limited to bodies with surface areas on the order of X2. Larger surfaces

(of 1 45 X2) can be analyzed via the MM technique if the vehicle body has

some degree of symmetry, such as in the case of bodies of revolution (BOR).

To treat complex-shaped bodies, such as parts of wing sections and non-

circular aircraft fuselages, a generalized theoretical formulation called

the method of moments for bodies of translation, abbreviated here as MM/BOT,
2,3

has been developed. This formulation treats the radiation and scattering

from bodies with active and passive apertures. In addition, the technique

has been extended to compute the fields in the immediate vicinity of a slot

antenna as well as fields coupled interiorly through rectangular apertures

in the BOT surface. The MM/BOT technique combines many of the cost-
4

effective features of the MM/BOR analysis with some of the shape flexibil-

ity of the wire-grid approach and retains the ability to treat difficult

- boundary conditions associated with realistic radiating and scattering

geometries.

q 1
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2. SUHKRY OF COMPETED EFFORT

The principal results of the completed effort are enumerated below,

Detailed discussion of the individual topics is given in the sections indi-

cated.

o The MM/BOT formulation was developed for a generalized BOT configu-

ration to treat the radiation from asymmetric aperture (slot)

antennas or arrays (Sections 4 and 5). The results are in agreement

with the predictions of the MM/BOR technique for asymmetric slots

embedded in a BOR surface (Section 8).

o The 1/BOT formulation was extended to compute all the electric and

magnetic near-field components at an arbitrary point in the vicinity

of a radiating or scattering surface. For radiating apertures, an

arbitrary polarization and antenna excitation can be specified

(Section 6).

o An analysis was implemented to determine the aperture-coupled fields

(both electric and magnetic) produced by EM illumination of the BOT

from an arbitrary angle of incidence and polarization (Section 7).

o A computer algorithm was developed to implement all aspects of the

MM/BOT formulation in a hierarchy of user-oriented computer codes.

The codes, written in FORTRAN IV, are modular and machine indepen-

dent. All parts of the codes were tested and installed on the RADC

computer system. A user/systems manual (Volume II of this report)

was developed for the MM/BOT algorithm. A series of example prob-

lems was provided to illustrate the technique for the prospective

user.

o The entire computer algorithm was tested for a series of EM problems

and validated with results using classical boundary value solutions

and the Mt/BOR codes (Section 8).

2
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3. SUMMARY OF PREVIOUS WORK

The original formulation of the method of moments (MM) was applied

initially to treat the radiation and scattering from thin wire structures1'5

and later to bodies of revolution.4 As shown in the subsequent discussion,

the M theory can be extended to treat finite cylindrical bodies of arbi-

trary cross section, denoted here as bodies of translation (BOT). Examples

of such configurations are shown in Figure 1. In this report, the cylinders

are assumed to be uncapped (i.e., open at the ends). The theoretical

development for this class of bodies parallels in part the MM/BOR formula-

tion4 and retains the modal expansion concept developed in the latter theory.

Earlier, Andreasen6, Wallenberg and Harrington , and Wilton and Mittra ,

among others, have treated the case of cylinders of arbitrary cross section

but of infinite length. The case of finite-length cylinders of arbitrary

cross sections has not been treated previously. Several investigators

examined the special case of finite-length, right-circular cylinders for

various limiting cases. For example, Ufimtsev9, KieburtzlO, and
11Fialkovskii developed solutions for thin cylinders with ka << 1; while

Adey12 considered long cylinders with ka - 1, where ka - 2na/A and a is the

cylinder radius. Williams studied the diffraction from finite-length

hollow cylinders where the open ends did not materially influence the dif-

fracted waves. A complete study of tubular cylinders was made by Kao
14'15

for arbitrary length and ka, but restricted to broadside illumination. His

formulation resulted in a pair of decoupled integral equations that were

solved to yield the axial and the circumferential currents on the cylinder.
16Recently, Davis and Mittra examined the current distribution on an open

. cylinder of 1 X length and ka - 1 using a hybrid formulation incorporating

the electric and magnetic field integral equation representations of

Maxwell's equations (i.e., EFIE and MFIE, respectively). The present MM/BOT

formulation treats the foregoing problems as special subcases.

3
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PSlit cylinder OSquare cylinder.

Flat plate

Flat plate2

Figure 1. Body of translation (SOT) configurations.
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4. DEVELOPMENT OF MK/BOT FORMULATION

4.1 Electric Field Integral Equation for BOT

In a given radiation or scattering problem, the total electric field is

given as

R + E (1)

where i and a refer to the incident and scattered fields, respectively. The
-9.

scattered field in turn is defined in terms of the vector potential, A, and

scalar potential, $, yielding

A w= -/ J- ds, (3)

11 fJj 4'irR(3

=o e - ds, (4)

M .Vej (5)IW
The field at the surface of the conductor can be expressed in terms of the

incident and scattered electric fields Ei and Ea, respectively, i.e.,

tnis ta [J(A(J + VIM tan L(J), (6)

where J is the unknown current density on the surface and L(.) is a linear

integro-differential operator over 5. Writing out Equation (6) explicitly

yields

Se-jk ejkR

tan 47iff 20 0 J) "Itan
52o~ e
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4.2 Expansion of Surface Currents

Restricting the discussion to a BOT, Equation (7) is solved for I by

subdividing the domain of the integro-differential equation by segmenting

the BOT surface S into length-wise strips as shown in Figure 2. On the con-

ducting surface S of the scatterer (Figure 2), the unknown current density J

is expanded in a double sum of basis functions spanning S, described by the

orthonormal coordinates (tz), so that

j t ni j z j n

j-th strip-
i-th strip-

(Xj. yj, z z) it, zj)

~t 2

z OP7*0041-2

Fiure 2. Sgnited BOT configuration.

where 4 - z/L, T - t/F, and vn( ) is to be defined later. (L is the half-
, -. length of the scattering body along z, and r is the girth of S along t

divided by the number of strips chosen to represent S.) Equation (8) implies

a modal expansion of J along ;. The terms f(T) and f (T) can be chosen as

pulse, piecewise sinusoidal, or, as in this case, triangle functions, i.e.,

fa ( 1 - I < - T - j a t or z. (9), . 0 , IT 'I >

6
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For a nonclosed BOT (i.e., the alit cylinder in Figure 1), a half-triangle

function. is used to expand the currents along an edge parallel to z. The

choice of triangle functions allows compact, computer-coefficient expres-

sions to be obtained for the M44 impedance expressions. Substituting Equation

(8) into Equation (7) and forming the inner products via the Galerkin pro-

cedure with respect to a set of trial functions i i (- 'i). ,ith a - t or z,

yields the matrix equation,

_n I-n

Vo - ZBoT 10 (10)

V T

in1n

In Equation (10), the column vectors V and I refer to the equivalent voltages

and currents on S, respectively, and where the i-th element of V in terms of

the inner product for the n-th mode is defined as:

1 <'ta ni>

(11)
fd a _E" ufds Ei' 0'T *

• Stan ni an L i ( n

S S

where V' with a -t or z, denotes the a-directed voltage on the BOT.

'-

7n
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4.3 Derivation of the Impedance Matrix, ZWOT

The structure of Z is given in Figure 3, where each Z is a full
BOT un

subtmatrix. The foregoing matrix equation bears a canonic similarity to the

)IKIBOR result. However, in general, the expansion functions in Equation (8)

are not orthonorual with respect to the integral operator L() over the our-

face of the DOT as in the BOR case. Thus, In principle, all the Z nmatrices

are present in ZWOT, since there is no modal decoupling. The elements of the

partitioned submatrices of Z can be computed from the general expression:

(z~~ .1/*dsffds' miia (81s) 'J ci + (E0 (~.~ S')(v. (s)

(12)

5-JkR

4WR

where

(ax, -t or z) and R - (x - c), + -(y - y') 2 + (z - Z')2

Using the expansion for I~ [Equation (8)] and the fact that Wni-

(denotes a conjugate) and noting that for any vector I,' tP

L"1 '(aA z/aC), Equation (8) becomes:

J Ki6f do f ds' (os(V -v') f (T) ft(r')

S S1 (13)

W-~~ T) it(T))v 5 'v() ,

-Zj, f~ jdsjf doit f Z (T) r(') W'~)4 (14)

S 5'

9



and

-ZLzo jKln6 f dafdi (:')n~c K 2 0

S st (15)

where

do - dTd;; r - ; 6 - . ; K - 2w
0

and2 2

Ie
and 1 e-47r 62p2 +  ( €  ,)

V_)2 
(16)

P " 
4 (x - x) 2 + (Y- )2

and v and v t are the angles between the t-curve and the x-axis at points x,y

and x',y' on the BOT, respectively. The expression for (Zzt)n is identical

to that given in Equation (14), with m and n, and i and j interchanged. For

evaluation of Equations (13-15), the functional form of v n() - exp(jnlr ) was

chosen. The triangle function fj(.), (Equation (9)], and its derivative

are approximated by four pulses, denoted as T and Tp, respectively, with

p 1, 2, 3, 4 where

.1. Tp 3 1 and - . - , - •

The expressions for the (ij)-th elements of the submatrices of ZwOT are

obtained by carrying out the surface integrals in Equations (13-15). The

corresponding triangle functions are depicted graphically in Figure 4. Thus,

4

)t J2Kr6 qi q - ) - 1 itit G (17)
. it n p,q- p q

,1

4i
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4.4 Evaluation of Gun Functions

The evaluation of G U encompasses two surface integrals, written

explicitly as:

G (iJ) - f d ' f dr f 1d 1fdd '  , ' "

p q - 1 4 (21)

ej j(n - u1:')

where the r' and T integrations are carried out over the p and q-th subseg-

ments (strips) associated with the i-th and J-th strips (see Figure 4).

Letting E - - ', the two integrations over C and C' reduce to

%Gi(i-) = f2d u(E) fd 'fd -J (22)

0 p q

where

T ( - cos nr; m- n

Umn() 1 m-n+l (23)

")r sin .9-) 1 COS Tw; s n

and

R and x - x')2 + (y - ,

r

The integral over T' using the centroid approximation over the interval ATp'
p

yields

G "; m(i, i) / un(r) (Arp')J dT 5-p- ' 24• = 2 T2 e- Kp (24)

0 Tjp

12
t.



where

and

(q [+3j 2 Ji+ (q 2)

The integration over T can be carried out analytically using a Taylor expan-

sion of the integrand about R and completing the square in the integrand.
pq

Using only one term in this expansion yields

T p T"p -K-

d -JK 2( + 0) 2 + d2 _ 2 pQ +22

16 1T + d2

eK }pq )JK(T. T )+(1+JKpq2 2 do
2 1 . -J

where

opq2 . . [(xq xp) cos Vq +(yq y) s q

and R F2 2+C
T ( 4 pq Ppq

2

d2  Ri2  -62.T 2

pq 0

13
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The approximation in Equation (25) implies the condition that

X IRp - Rpq I

The integration over s in Equation (25) is carried out analytically. Then

approximating the integral over & in Equation (24) by a series,

M-1

G E- u' a (26)
Mu M )JO anu V

where

M ) ~ e pq l+ JKR ln X (27)

X 2[:~ I K (28)

and

S(T 1/~l4), M 2V + 1

For the self-terms (i.e., p -0), Equation (24) reduces to the form,
pq

2 ~

%n d6 4 4 622 n_~

14
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The integral over can be evaluated numerically via Gaussian quadrature or

a Simpson integration routine after an integration by parts to soften the

in E singularity at the lower limit. Thus,
+,26

2 'FI (29)

- JK& (ln; - 1) - JK&ln . Eu'() (ln& - l) (

This completes the evaluation of the elements of the ZBOT matrix. The

analytical and computational complexity involved in this analysis is approxi-

mately equivalent to that encountered in the MM/BOR formulation. Thus, the

matrix fill times for each impedance element in MM/BOR and MM/BOT are about

the same. Furthermore, detailed examination of the Gm (i.j) function shows

that it is maximum when m - n and i - J, i.e., the largest values occur on

the main diagonal of the ZBOT matrix, and the self-terms contribute the most.

These properties lead to a diagonally strong overall matrix that is inter-

coupled significantly only for the neighboring modes. Computer simulations

have confirmed this feature.

4.5 General Structure of t he. Impedance Matrix

Using the results obtained for the individual members of the partitioned

subatrices in Equations (17-20), the overall impedance matrix for a BOT can

-be constructed as shown in Figure 3. In general, this matrix is full since

K there is no modal decoupling. (In the MM/BOR analysis, only the matrices Zmm
!% along the principal diagonal are present.) However, certain symmetries exist

for the G., and zma that reduce the fill time of the ZBOT matrix. Specifi-

'I cally,

tt tt
a t(ZM)

7t (30)
mt-Z) -( n(Z)

mn t mn

15

-L b



where t(Gn ) denotes the transpose of Gmn. In the implementation of the

analysis, only the lower triangular quadrant of the ZBOT matrix is computed,

i.e., the partitioned submatrices are filled for 0 < m < NhODE, and

-m < n < m, where NhIDE is the total number of axial modes (including m - 0)

used in this analysis. To compute the inverse of ZBOT, the entire ZBOT

matrix must be filled, which can be accomplished from the following symmetry

relationships:

S (--m.-n) (-n,-m)

Z t t  M Z t t  M Zt t  , Z t t

n,m m,n mn mn

,zt ._ .tz\ - - zt t
n,m t rmn m,n t( re,n/ (31)

z. zt _ t Z  .(~
n,m t\ m,n- Zm,n t\m,n)

Zzz z zz W Zzz MZzz
nm m,n m,n m,n

These relations are exploited in the MH/BOT computer algorithm to minimize

the fill-time and aid in the solution of the matrix equations arising in the

formulation. If the BOT has several (physical) planes of symmetry, addi-

tional relationships can be established within each of the partitioned sub-

matrices, again allowing savings to be made in the computational requirements.

In summary, the M/BOT formulation yields an overall network representation

2 composed of diagonally strong matrices, possessing certain symmetries and

,: appearing to be intercoupled significantly only for neighboring modes.

16
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5. FAR-FIELD RADIATION AND SCATTERING ANALYSIS

Having obtained the expressions for the ZBO matrix, the currents on

the body can be obtained by solving the network matrix equation for the

current vector I. In turn, knowing I, the radiated or scattered fields can

be obtained as in the HK/BOR analysis if the radiation transfer matrices
RtO RZ , Rt, and 0n  are given. Formally, the i-th element of the trans-
n n h n

fer matrices is defined as

(R ~Slu) (32)

where the superscript a denotes t or z, and u denotes the e or 0 polariza-

tion of the radiated field EU. In spherical coordinates,
r

u Jk(Psino Cos0r + z cose)
u e ,(33)

r r

where the field point of measurement is at er, r , and p is the distance to

a point on the BOT surface, measured from the origin (see Figure 5). Expres-

sing the inner product in Equation (32) explicitly, the transfer matrices are

given as:

tO 1 u . jk*

(R) i d-r dC(u_*u) f_(T) v ( e (34)( ) i 1

i -1

(R') rLJ drf dC(iU *r) fl(T) V (C) Gj~~ (36)

hi -

)i (r*)n = 0 . (37)

t n

17



i-th strip

SOT

Ut 7i PiObservation point

Figure 5. Coordinate geomestry for transfer matrix evaluation.

Referring to Figure 5, the unit vectors for the BOT geometry are given by:

ut u cosv +u sinyx: y

u UXsin + U c
and

Ue Ux cose r co(or + cO r sinor -u z sinO r

u x r +uy osr.

18



Using a centroid approximation for the t-integration, a pulse approximation

for the triangle functions fi () and letting v n() - exp(jnwr) in Equations

(34-36), the expressions for the i-th element of the transfer matrices

become

te 4(R )ii=t CO°r 1  A Tt cos(V - ) (38)

cj- q q q r)

qqwl
(*) i  ar sin -r) (39)

nqr q q,

(R() =0 (40)
(R) a E ~Ar Tt sin(v - )(0

nq-1 l q q r O

-RO) , (41)

where

Ar e kpqsiner COS(Oq - O )

q

a - 2 L sinc(e)

-(n + 2L e W

Using the R-matrices above, the far-field power radiation patterns and the

- scattering cross sections can be computed.

5.1 Far Fields

The total radiated far-field in u-polarization can be computed from

-j kr
(R-- [ (Y ][V , u or (42)

u 47r r mn m m,n n

where the sum is taken over all modes m,n used in the analysis., In general,

the far-field power radiated by a BOT, excited by an arbitrary antenna con-

figuration, is given by

19
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O n liuriry I~y IV1 (43)

where

0 am m Re ]VI[Y ]rV*I;n aI0 (44)

where the caret indicates a row vector. The matrix Y denotes the parti-

tioned submatrix corresponding to the (mn)-th modes in the inverted ZOT

matrix. The form of the excitation voltage vector V depends upon the typen
and location of the antenna on the BOT. As an example, consider a series of

K aperture (slot) antennas embedded in the BOT surface and centered at

(Tk, k), k - 1, 2 . . . K. Assuming that the apertures are rectangular,

then if the aperture at the i-th axial strip subtends one triangle function

fi(T) and an axial width of ( 1 - Y )

a l/ r1-E
I i.ni i>

i

In general, the aperture excitation function Ei(T,C) can be specified to be

of any form. For this discussion, let the slot be uniformly excited by

S.(V/m) in the a-polarization, so that

+ , < 1r-
SI 0 otherwise46)

Then

*a tf'a (47)
n ni I
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where

ui ff (T) dT (48)
i

and

(tl - t°o ri' U ) E
a , -, j~ (49)

In the above expressions, it is assumed that the i-th slot is excited

uniformly in the t and/or z polarization by an electric field, El, which may

be a complex quantity. In the program if Vn 0 0, then (U) is represented
ni i

by an array of the form

0

U.

0 (50)
0

zIt 0

If the slots are excited solely in the t-polarization, then ? - 0. For

iisimplic tU and li can be set equal to uni~ty. By obvious extension, these

results can be generalized for a BOT containing a series of slots at a given

axial strip, as in the case of two-dimensional antenna arrays.
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5.2 Scattered Fields

In general, the cross section In terms of the scattering geometry shown

in Figure 6 is given as

2 *( i 6 4) .esL 2 [R]y ] [Re-] ,(1

A 47rX mn m p

mR] [RtpJ

m

current on S and an observation point in free space. Examples of cross

sections computed from this expression are given in Section 8.

22L

1~~~.' Rrqur 6. Coordlnmte 9somstu for uaat~ng analysis
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6. NRAR-FIELD ANALYSIS

In the foregoing sections, the radiated and scattered fields were com-

puted at field points sufficiently far from the BOT so that the wave fronts

were planar and the field components transverse. Thus, the magnetic fields

could be obtained from the computed electric fields via the free-space wave

impedance, n - 377 1. In this section, the NM/BOT formulation is extended
to permit the electric and magnetic fields to be computed at points <

distant from the BOT surface. First, the near-fiela expressions for the

electric field will be derived, followed by the corresponding results for

the magnetic field.

6.1 E-Near-Field Formulation

In general, the electric field at a free-space point r', resulting from

a surface current density J on a surface S, is given by

E(r') - L(J), (52)

where L(o) is the integro-differential operator defined in Equation (7). In

this discussion, the current density can be induced by an incident wave

illuminating the body as in a scattering problem or by an active aperture on

S as in a radiation problem. The second term of L(J) in Equation (7) can be

rewritten using the relationship that

vffv 3)r 'dsff(V *) (r'- d') *4(r- r') do,

S S

where 0 (r - r') - [(/R 2) + J(k/R)] *(r - r') and 0(r -r') is the free-space

Green's function. If S corresponds to a BOT, the electric field at r' can
4.

be rewritten in terms of the t and z directed components of J. Using the

modal expansion for 3 [Equation (8)] in Equation (52),

23
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1- jwiorL d dT jnv; O(r - r') [ t  f t-r) + UI'f(T]

EW)~~~ jw L n jJ

" L F, fi _1*d •jnwT 01 (r - r')j(r - r') (53)

I t ( T )  )(

i1 r )j \L/ (T'

where

O(r - r') - J4 R (54)

(r r') = 1-. + A 0(r - r'), (55)

B(r - r') = (x - x') + ' (y - y') + Uz - z'), and R is the distance
y

between field and source points defined earlier. The evaluation of the

integrals in the foregoing expression follows the schema used in determining

the integrals in the impedance expressions (see Equations (13-15)). Using a

pulse approximation for the fi (.) triangle functions, two generic integrals

result with integrands containing 0(r - r') and *l(r - r'). These are eval-

uated next. Denoting the field point r' with (Tp, i'),

fd ejn1T; 0(

(56)
:',':..:;:':>:':., : - j n irC'  / d& e j n ~re dT e L

qinl 1q P

~ I 24
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where R. p6 + with 6 and pdefined as before (Section 4.4). The

T integration is carried out analytically after the integrand is expanded in

a Taylor series about R Then,jt becomes
pq'

4 1-41 -JKR
Jnlrl f & ejw& e pq JK

~ enwdFrL K(T2 -l

+ (1 + iKRpq) if -d (57)
Tal sr+d- e

ejnlR41 4

L qmln

where
M1-

G (q) E ~j u( a (F M (58)

jnir&

u~s a (59)

- 2~~l -- ~(60)
Ell M

and f(& and its associated parameters are as defined before in Equations

(27-28). Note the evaluation of Ilis similar to that of Gan(p~q), except in

the present case there is only one surface integral to evaluate instead of

two.

The evaluation of the integrals containing 01(r -r') parallels the

steps followed above. Specifically,
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I2(y) - dT env U  V ) 01 (r - r')

-JKR (61)

en wLR y M 0 or
V 1 -1-c' q p

where C = C - '. Expanding the integrand again about Rpq, the T integration
can be performed as before. The resulting expression for 12 (y) become

ju ,4

I ejn ' - Hn(q), (62)
"2(Y = q-1 (2

where

M-1
Hny(q) - E UY h(& ) (63)

n M A.

uO( ) jnrF

( ) - a (64)
nP 4w

u 1 (yu CO u (y. (65)1 n

and

h( d an tan (

I (66)
(1 + JKRq) 8 "2 "a 1

+
d'= 2 d 2  .

where X and all the other parameters have been defined before. The expres-
sions for 1 and 12 have no self-term since the point of observation
r'( - rp) is assumed to be different than r, i.e., R 0 0.

p pq
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Using the results for I1 and I29 the expression for the electric field

in terms of the G and H functions become

i ' - 2jkl einr' ur[ ': (t CO G~q) + 1T(q~x)~)
4

, ni,2 q q qnq

4
+imq G, -FT; -yq) H() (6

4

+ (y )y ')(q)nr j Tq sn (q) + 22 qJ qE , n+,67)
4

+E z . i- - q' 1

n~j n eIq1-O

4u 4~~ t HH1((qI.,j T z(GrI(q) +j'fHI()+tqt
z qin, q6 2I

6.2 H-Near-Field Formulation

* In general, the magnetic field is given in terms of the vector poten-

tial A and the incident field 9(r) as

H(r') - i(r') + V' x A(r'), (68)

where the primed coordinate is at an arbitrary test point where the field is

to be sampled. Letting Hi(r') - 0, since there is no field at r', except

that caused by currents induced on the scattering or radiating surface S,

Equation (68) becomes

27
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-(' V, xffJ(r) O(r -r') do

S

- Jff (r) x V1 0( r - r') do. (9

S

Expanding the gradient over the unprimed coordinates,

V' *(r - r') - (r - ro) 01 (r - r)

where 0(r - r') and 01(r - r') were defined before in the E-near-field analy-

sis. Noting that the surface current density on the BOT may be decomposed

into t and z components, Equation (69) can be written explicitly as

u xf) (z - z')sinv i (y - y')J]
S (70)

+uy L(x -x')J. - (z - z')coSV it] + i [(y - y')cosv

-(x - x')sinv Jt O

Using the modal expansion of the current components [Equation (8)) and

evaluating the surface integrals in the same manner as in the E-near-field
* analysis, yields the following expression for H(r'):

44
H~l Tq (y E (I [E T s n Tos(q) (71)I

i.q1n~j yj q=1 q q

T (y ')o (q (x I ,TtovR() (1
q((Y q q n, njJlq
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The spherical field components at r'(- p', *', 8') for the E and H fields

can be formed by combining the cartesian components in Equations (67) or

(71). Thus, letting A denote the E or H fields, the appropriate spherical

field components are given by:

A8 , - A1 cosO' coso' + A cosO' sinO' - A sin6' (72)
xy z

A*, - - A sin*' + A cos*' (73)
x y

AP, - A cosO' + A sinO'. (74)
x y

In the foregoing discussion, the electric and magnetic near-fields were

sampled at a point. An alternate approach was also considered in which the

fields were sampled and averaged over a rectangular patch. This latter for-

mulation was a generalization of that given in Reference (17). The predic-

tions from the patch and point near-field analyses were compared for a

number of BOT configurations. Numerical simulation showed that in regions

where the electromagnetic wave departs significantly from being planar (i.e.,

in the vicinity of active or passive apertures), the point-sampled fields

were more accurate, particularly for aperture-coupled fields. Actual com-

parison of these formulations is detailed in Section 8.

,;€
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7. APERTURE COUPLED FIELDS

The problem of electromagnetic fields penetrating through small aper-

tures has been treated previously using the Bethe small hole theory.
18 21

Recently, the M technique has been applied to symetric and asymmetric

apertures in BOR.22'24  A computer program has been developed by Schuman
22

to treat the former class of problems. Here, the MM technique is applied

to the case of rectangular asymetric apertures embedded in the BOT. The

analysis uses the Schelkunoff equivalence theorem, which replaces the exter-

nal sources illuminating a body with apertures with an equivalent problem

having only aperture current sources. From the aperture currents, the near

fields inside the body can be computed. In the present discussion, the

aperture is assumed to lie anywhere on the BOT surface; however, an aperture

near the ends of the BOT can lead to anomalous unphysical results. The

aperture edges are taken to lie parallel to the z and t coordinates of the

BOT, a restriction that can be relaxed at a cost of greater analytical com-

plexity. The subsequent discussion assumes a single aperture. The extension

of the analysis to several apertures is straightforward. The Schelkunoff

equivalence theorem25 is discussed next for a general scattering surface,

followed by its application to a BOT.

7.1 Schelkunoff Equivalence Theorem

A graphical statement of this theorem is shown in Figure 7. The orig-
inal problem of external fields E and H illuminating a body with an aperture

is depicted in Figure 7a. The internal (aperture coupled) fields are 2 and

H 2 . With the aperture covered (Figure 7b), a current 1o is induced in the

region of the covered aperture as a result of the external fields 0 and r
In Figure 7c, the equivalent current in the aperture region is shown as (-j )

because of the composite external electric and magnetic fields, i.e.,

(i1 - o1) and (A1 - 'H), respectively. A simple superposition of the problem

depicted in Figures 7b and 7c yields the original problem in Figure 7a. The

results of the Schelkunoff theorem will be applied to a BOT geometry in the

following section.

i 3o
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ElO HI

E2. H2

(A) Original problem (EI- EO) , ( H '  NO I )

(B) Aperture covered (C) Equivalent aperture
currents

Figure 7. Sohelkunoff's equivalee theorem.

7.2 Expansion of the Aperture Voltage

Assume that a rectangular aperture is centered at T and on the BOT

(Figure 8). (The normalization of the coordinates adopted in Section 4.1 is

~~again used. ) Let the BOT surface be illuminated by a plane wave (1 51)

" ,eminating from an angle (61, *1). Then the field in V/rn at the q-th strip

..+ ~spanned by the J-ch triangle funcrion fj()subtending the aperture is

I A

Sq t qz qC --I ~~ ~2

,'i: !where

,~~~ 2, &H2sI1 - o

't

and At and Az are the t and z-polarized field components induced across the

q qq -a 2(5

aperture are due to the incident fields. These components will be determined

31
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BOT t a  Aperture xtop view 1

/T 
z/L

= t/r
2P = base of triangle

function

L

BOT
side view

Figure 8. BOT geometry for aperture analysis.

in terms of the illuminating plane-wave incident on the entire BOT surface.

In Equation (75), U(.) is the unit pulse function and X(), (a - t or z) is
q

the sampling function of the fields in the aperture. In this formulation,

these components are defined to be pulse functions (Figure 9) and are similar

to those used by Schuman in the MM/BOR analysis22 . Note the ec( • ) functions
q

are modified near the ends of the aperture to approximate the edge behavior

of the t- and z-directed currents. If the aperture subtends N strips, then

Equation (75) is generalized so that the total aoerture field is

32
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pr -

Triangle functions IIII
on BOTI _ IIII

Start of Edo
aperture aperture

Figure 9. Representation of expanuion functions in aperture region.

N

F, -Eq(76)
q1 q

The induced voltage at the aperture [Equation (75)] can be expanded in term

*of the expansion functions used previously on the BOT, i.e.,

q- n nj fjr uz e (77

Equating Equations (75) and (77),

(78)

A q Dn Fj q
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where

D AC e -  a sinc(nw2 ) (79)

and

T+

-I dT f (T) X'(T)j~q j q /(80)

T

The limits of integration T+ and T- span the opening of the aperture in the
T direction. If the pulse function X(-) also overlaps the (j t l)-th

qM
triangle functions, then Equation (80) also yields F ±tlq .

For a given illuminating field E, in either e or # polarization, the

voltage vector % is specified so that the currents on the BOT can be com-puted on the surface with the aperture covered over (i.e., Figure 7b) from

.: i:Ln)" "-1 -V~n
'-.n] _n]V

1] " ZBOT V0  (A/a) , (81)

n] V n
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V t
nl

LV t

nI (V/rn) (82)
Vz

V z

0 0

o 0
VIFn'j-1 J1~

Vo- ' PAa ;(Octor z) (83)nnq

Va
n ,j+l

0 0

5 0

7.3 Derivation of the Aperture Admittance

Equation (81) yields a relationship between the modal current components

on the DOT corresponding to the i-tb triangle function (i.e., Inis n - 0
.4n

+1, ... ) because of a voltage sampled by the J-tb triangle function (i.e.,

%J) Writing out Equation (81) explicitly with only the i-tb rows and

i-tb columns retained,
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r tt tz- Vt

... Yj... .j . ...... i

Sztn,.] -n ,J- .

0 
0

t t t t 1

Sz t  .. (84)

it  
tt Ytz nt

Ihi JiJ 
YiJ nj]

Ut zzII
s tiLa

For the subsequent discussion, it is convenient to adopt the following short-

hand notation for Equation (84). The m-th row of Equation (84) can be written

as:

[zJ [ ( ] 0fjL ] j , o, +1, ... , (85)
"I )

where Yi) denotes the individual partitioned submatrices in Equation (84).

The admittance matrix in Equation (84) is a full matrix with all m,n modes

included. If the sampling points p and q lie vithin the aperture boundary,

then the above admittance matrix of the apertureless BOT can be related to

the admittance of the aperture. This case is considered next.
Formally, the currents Cap in the region corresponding to the p-th

sampling function Xp in the covered aperture region can be expressed as

Ct fy pq it
. .ap - \ a )pq (__ k y) q

z (86)
a/pq , pq
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p 11: z (86a)mi

where the currents Cap are expanded in terms of modal components and triangle

functions, where the aperture admittance (Ya)pq is determined in terms of
( ), n  w e e t a n  A

Yij and where A and A are the t- and z-polarized field components

across the aperture (see Equation 75). The negative sign in Equation (86a)

is due to the Schelkunoff theorem, i.e., the equivalent aperture currents are

the negative of the currents induced on the apertureless body in the vicinity

of the aperture resulting from the illuminating fields (i.e., Figure 7c).

Substituting Equation (85) into Equation (86a) and using the results of

Equation (83),

ap nq

inp f m In n

f p :eJmICP D i4 FO- q

!I

+(' ) FO + q1 [)M J'iiq i" iJ~ A~ z (7a

where (Yka)m is the (k,l)-th element of the entire inverted ZBOT matrix for

mode pair (m,n), and a,$ denotes tt, tz, zt, or zz. The bracketed terms in

Equation (87a) constitute a matrix partitioned like Y in Equation (86). Thea

expression for the individual elements of the admittance matrix is obtained

by equating the right sides of Equations (86) and (87a), i.e.,
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cz a 
l c

Ya lpqm4 Pmn jjij-1) ) -n

(88)

+ ('q+ ()+1,q

where Dn and F are given in Equations (79) and (80), respectively. Thus,

the individual elements of the aperture admittance are composed of a triplet

of matrix elements from the inverted ZBOT modified by the integral of the

aperture sampling functions, represented by the F functions. The above

expression is the admittance of an asymmetric aperture and is generically

similar to the BOR results given in Reference 22 for the circumferentially

symmetric aperture problem.

7.4 Equivalent Aperture Excitation Voltage

To compute the aperture coupled fields (i.e., E2 and 2in Figure 7c),

the voltage induced in the aperture as a result of the illuminating fields

must be computed. This voltage is the equivalent aperture excitation voltage

which can be obtained from the aperture admittance and the currents in the

aperture region. For the p-th current C (a - t or z), the equivalent
• 'ap

aperture voltage E , sampled by e(-) is given by
q q

EV t a Y P)

EV j z

pqp

i (,' " 'where K denotes the number of pulse-sampling functions X(') used to describe

the current in the aperture region. Having determined 6V (q - i, . . . K),
q

the voltage excitation VJ corresponding to the J-th triangle function on the

original BOT spanning X ) can be obtained from
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rI

1_ EVt (F 1 ' + Fj' + Fj~ )1

EVZ (FZ +FZ + (
j-l,p jp j+l,

(F -- + ~p + ilp)

Then the effective currents on the BOT in the presence of the aperture for

the m-th mode and the i-th triangle function are given by:

1 , I <,, L
ni m

where the indexes m and j run over all the modes and triangle functions on

the BOT, respectively. The resulting total currents on the BOT with an

aperture is reconstructed from the modal coefficients so that at the i-th

sample point Ti, the current is

C1 FCt1

zI f- i ()e' nr 1 z (92)
C' n C~

ii Lni-J

The axial distribution of the currents is obtained by evaluating Equation

(92) for I < 1. At the edge I 1, theoretically, an infinite number

of modes is required to obtain an accurate representation of the current.

Since only a finite number of modes can be used in practical application

of the MM/BOT formulation, care must be taken to interpret the current dis-

tribution near an edge.

t i7.5 Computation of Aperture-Coupled Fields

), .The electric and magnetic fields penetrating an aperture (i.e., and

r v ~in Figure 7c) can be determined using the near-field formalism described

39
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in Section 6. The aperture-coupled electric and magnetic fields are given

by Equations (67) and (71), respectively, where the current coefficients 12

are replaced by Cnj given by Equation (91), and the observation point r' is

within the BOT. The three components p, #, e for the electric and magnetic

fields are again obtained from Equations (72-74).

'7r,
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8. VALIDATION OF THE MK/BOT FORMULATION

The MM/BOT analysis was applied to compute the far fields radiated and

scattered by a BOT as well as the near fields and aperture-coupled fields

for various antenna, aperture, and body configurations. The results were

compared with data obtained using accepted experimental or other theoretical

methods. In the subsequent examples, the results for the scattering cross

sections, near fields, and aperture-coupled fields are not normalized.

8.1 Validation of Far-Field Analysis

Because of the availability of computer codes for the !AIBOR formula-
17

tion, the far-field radiation patterns were computed for antennas embedded

in a BOR. The results from the MM/BOR and MM/BOT formulations were compared.

As an example, a slot antenna embedded in a right cylinder of radius 0.216 A

and length 2.76 A is depicted in Figure 10. The 0-polarized slot subtends an

angle of 45* and is 2.06 A long. The pitch (vertical) and roll plane power

radiation patterns are plotted in linear power, normalized to the MR/BOR

results. There is excellent agreement between the MM/BOR and MK/BOT results,

with seven circumferential and four axial modes being used in the respective
~calculations. The sensitivity of the MM/BOT calculated pitch and roll plane

patterns for the above slotted cylinder as a function of modal sparsing is

shown in Figures 11 and 12, respectively. The calculations show that use of

only diagonal modes (i.e., m - n) in the M/BOT results in an approximate 10%

deviation from the IM/BOR patterns. The power distribution, normalized to an

isotropic radiator, versus mode number is shown in Figure 13 for this problem.
W

ZA (The numbers in parentheses are exponents. "Negative" powers arise from co-

puter round-off errors and are insignificantly small. Negative powers are

often also obtained for certain modes in the MM/BOR analysis of Mautz and

L. Harrington.) The maximum powers occur in the self-modes (i.e., m - n).
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MM/BOT, 4 modes
--- MM/BOT, main diagonal modes Slot dimensions:

..... MM/B0T, main and off-diagonal modes 2.06 X x 0.084 X
2.76'Xlong BOR
ka = 1.35

OP79-04S1-12

Figure 11. Sensitivity of radiation patterns to modal sparsing: vertical plane (0-fed axial slot).
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MM/BOT, 4 modes
- -- MM/BOT, main diagonal modes Slot dimensions:
.................... MM/BOT, main and off-diagonal modes 2.06 x 0.084).
2.76 ), long BOR
ka = 1.35 W Iu

~~ Figure 12. Sensitivity of radiation patterns to model sparsing: roll Pla (4i-fed ajiall dot).
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m-3 -2 -1 0 1 2 3

-3 4.08(-6)

-2 7.2(-6) 7(-5) *- fed sl ot: 2.06X x 0.084X

-1 1.2(-5) 3.2(-5) 2.6(-4)

o -4.8(-5) -1.3(-4) -2.2(-4) 3.4(-3)

1 1.6(-5) 4.6(-5) 6.7(-5) -2.2(-4) 2.6(-4)

2 1.1(-5) 3.4(-5) 1.6(-5) -1.3(-4) 3.1(-5) 7 (-5)

3 Z 2(-6) 1.1(-5) -4.8(-5) -4.8(-5) 1.2(-5) 7.2(-6) 4(-6)

OF7-0451-13

Figure 13. Power distribution a a function of made number (MM/BOT analysis for open cylinder
2.76 X length, 0.21 GX radius with 0 - fed slot).

Examples validating the scattering analysis in Section 5.2 are considered

next. In Figure 14, the bistatic scattering cross section for an open

cylinder of radius 0.216 X and length 2.16 X is given. The cylinder is

illuminated broadside (6 - 90*) with a TE wave. The absolute cross sections

predicted by the H/BOR and MM/BOT formulations are in close agreement. The

* monostatic cross section for a square cross-sectioned cylinder when illumi-

nated by a TM (6-polarized) field is shown in Figure 15. The NM/BOT results

* are computed for a 2.76 X long cylinder; the Wilton-Mittra data (Reference 8)

are for the corresponding infinitely long cylinder.
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The applicability of the present analysis is to degenerate BOT surfaces

is demonstrated in Figures 16 and 17, where the monostatic scattering cross

sections for a flat plate (2 X on a side) and the bistatic cross section for

a parabolic cylinder of 2.76 X length are depicted. In both cases, the sur-

faces are illuminated broadside (i.e., -i W 0, 0i - 90). For these calcula-

tions, 4 modes and 16 triangle functions were used. The MK/BOT results in

Figure 16 are in good agreement with the experimental results 
of Ross.2 6

Similarly, the TM polarized results for the finite-length parabolic cylinder

in Figure 17 are in good agreement with the analytical predictions of

Andreasen.

2.76X

0.4320

E 0~

. 10 ITI I I I I I "

.:i " :. "  I MM/BOT

:-. :.0 - --- MMIBOR -

X2d -10 -

-20 I I i

90 80 70 60 50 40 30 20 10 0

Broadside es (dog) End-on
ep71-0461-14

",. " Figure 14. Comparison of MM/SOR and MM/BOT computed bistatic cros section for open cYlindr.

.
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E'z(-E'eg)

-0.31 8k

Wilton, Mittra (infinite cylinder)
- - - -MM/SOT (2.76'A long cylinder)

2.5

2.0-

Scattered 1.5
field

magnitude,

E9  1.0

0.5

00
030 60 90 120 150 180

Backscatter o,(dsig) Forward scatter

Figure 15S. Bistatlc scattering calculations for a square cylinder.
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-20~ y
-MM/SOT

R.A. Roas
-25, (TE) polarization

-30- y x
E-
a I

-40I

-45 '

e0 (TM) polarization

0 30 60 90 0 30 6090
0 Wall) 0(dell)

OF734MI-16

Figure 16. Monostatic scattring cross section for a square plata.

20 4 K \900 Ee

C E

0

a10
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8.2 Validation of Near Field and Aperture Analysis

Validation of the near-field formulation for the electric and magnetic
fields is shown in the subsequent examples. In this phase of the investiga-
tion, the fields were computed by the Wl/BOT technique for points at
distances << X from the radiating or scattering surfaces. As a benchmark,
the exact boundary value solution for an infinite right-circular cylinder fed
with a *-polarized slit was used (Figure 18).2 7 The slit subtended an angle
of 0 degrees and was excited with a uniform field. If the field is sampled

near the cylinder, the predictions of the M/BOT analysis for a finite
cylinder can be compared with the exact (classical) solution obtained for

rE01 101 0
Aperture field: j0 ,

H j - b bnHn(2

.I 1" aH 'E ~, ' - H z =( 2 ) (p ~p le jn

allHz  w0e Eo no 1
'l~ where . . sin -"H()'

P j IWPe a nir 2 H (2) (a)

FiAe 1 Clssical slution for slit cylinder 0 -excited dit).

• 7 ' - ,',
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the infinite cylinder. A comparison of these solutions for a cylinder with

ka - 1.35 and a slit of 45* is shown in Figure 19. For the )O//BOT analysis,

the cylinder length was 2.76 X long and the slit length was 2 X. The near

fields are sampled along a line bisecting the aperture, resulting in EP = 0.

The closest field sampling was at 1.2a which corresponds to 0.2a (- 0.04 A)

from the plane of the aperture. The calculations using four and seven modes

produced practically the same results. Also shown in Figure 19 are the

fields obtained from a patch near-field formulation in which the sampled

fields are averaged over a flat strip. The large discrepancy of the patch

results from the exact solution at points near the body is due to the fact

that in this region the EM wave departs significantly from being planar. At

distances "' 10 A, the patch and point formulations coalesce. (As expected,

at these distances, the classical solution for the infinite cylinder and the

BOT results for the finite cylinder diverge.)

In Figure 20, the three near-field components sampled at a radial line

at -= 45* to the aperture center are given. Again, the results of the exact

and the MM/BOT solutions are in excellent agreement. The corresponding

results for field points sampled at * - 90* are shown in Figure 21. At

sampling distances >> A from the BOT, E decreases and the EM wave front tends

to approach being planar. Finally, the near fields for a slit subtending

22.50 are shown in Figure 22. In these calculations, 4 modes were used and 33

points defined the circumference of the cylinder. Again there was close

agreement between the exact and M4/BOT solutions.

An application of the aperture-coupled field analysis of Section 7 is

depicted in Figure 23. The internal fields, sampled along a radial line

bisecting the aperture, are induced by a broadside TM illumination of a right

circular cylinder. In the BOT calculations, the cylinder length was 5.52 X,

with the aperture subtending 22.5' and an axial length of 4.96 A. Senior2 8

considered the infinitely long cylinder with a 20* infinite slit and computed

*only the axial electric field, E . As can be seen, the BOT analysis is in: " z

good agreement with this result.
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Figure 22. Computation of new fields for slit cylinder at 0 -900 (slit angle 22.51
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9. COMPUTER IMPLEMENTATION

The MK/BOT formulation described in the preceding sections was

Implemented with a computer algorithm which is described in detail in
Volume II of this report. The overall structure of the program flow compares
with that of the MHWBOR codes. The computational complexity is approxi-

mately equivalent for both MM/BOT and H/BOR for a given size body. The
matrix fill-times are comparable. The major differences lie in the fact

that the modes in the present analysis do not decouple as in the M/BOR,
although, in general, the resulting network matrices remain diagonally strong
and have certain symmetries [i.e., Equations (30-31)]. For sufficient
accuracy, the off-diagonal submatrices for m n can sometimes be deleted

from the computation without excessive error penalty (i.e., Figures 11-12).
Adequate computational accuracy is achieved when the BOT surface is

segmented into strips 0.15 X in width. The number of axial modes chosen
is dependent upon the spatial accuracy desired for the surface currents.

While the examples shown in the validation section involved mostly right-

circular cylinders, the present formalism is capable of treating any asym-
metric BOT, such as a wing section. An example of this case is given in

Volume II.
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